Критерий сэвиджа пример решения. Статистические игры и принятие решений в условиях неопределенности. Максиминный критерий Вальда

Критерий Сэвиджа использует матрицу рисков || r ij ||. Элементы данной матрицы можно определить по формулам (23), (24), ко­торые перепишем в следующем виде:

Это означает, что r ij есть разность между наилучшим значени­ем в столбце i и значениями V ji при том же i. Неза­висимо от того, является ли V ji доходом (выигрышем) или потеря­ми (затратами), r ji в обоих случаях определяет величину потерь ли­ца, принимающего решение. Следовательно, можно применять к r ji только минимаксный критерий. Критерий Сэвиджа рекоменду­ет в условиях неопределенности выбирать ту стратегию Rj, при ко­торой величина риска принимает наименьшее значение в самой неблагоприятной ситуации (когда риск максимален).

Пример 6. Рассмотрим пример 4. Заданная матрица опреде­ляет потери (затраты). По формуле (31) вычислим элементы мат­рицы рисков || r ij ||:

Полученные результаты вычислений с использованием крите­рия минимального риска Сэвиджа оформим в следующей таблице:

Введение величины риска r ji , привело к выбору первой страте­гии R 1 , обеспечивающей наименьшие потери (затраты) в самой не­благоприятной ситуации (когда риск максимален).

Применение критерия Сэвиджа позволяет любыми путями из­бежать большого риска при выборе стратегии, а значит, избежать большего проигрыша (потерь).

4.Критерий Гурвица.

Критерий Гурвицаоснован на следующих двух предположе­ниях: «природа» может находиться в самом невыгодном состоянии с вероятностью (1 - α) и в самом выгодном состоянии с вероятно­стью α, где α - коэффициент доверия. Если результат V j i - прибыль, полезность, доход и т. п., то критерий Гурвица записыва­ется так:

Когда V ji представляет затраты (потери), то выбирают действие, дающее

Если α = 0, получим пессимистический критерий Вальда.

Если α = 1, то приходим к решающему правилу вида max max V ji , или к так называемой стратегии «здорового оптими­ста», т. е. критерий слишком оптимистичный.

Критерий Гурвица устанавливает баланс между случаями край­него пессимизма и крайнего оптимизма путем взвешивания обоих способов поведения соответствующими весами (1 - α) и α, где 0≤α≤1. Значение α от 0 до 1 может определяться в зависимости от склонности лица, принимающего решение, к пессимизму или к оптимизму. При отсутствии ярко выраженной склонности α = 0,5 представляется наиболее разумной.

Пример 7. Критерий Гурвица используем в примере 4. Поло­жим α = 0,5. Результаты необходимых вычислений приведены ниже:

Оптимальное решение заключается в выборе W.

Таким образом, в примере предстоит сделать выбор, какое из возможных решений предпочтительнее:

по критерию Лапласа - выбор стратегии R 2 ,

по критерию Вальда - выбор стратегии R 3 ;

по критерию Сэвиджа - выбор стратегии R 1 ;

по критерию Гурвица при α = 0,5 - выбор стратегии R 1 , а ес­ли лицо, принимающее решение, - пессимист (α = 0), то выбор стратегии R 3 .

Это определяется выбором соответствующего критерия (Лапла­са, Вальда, Сэвиджа или Гурвица).

Выбор критерия принятия решений в условиях неопределенно­сти является наиболее сложным и ответственным этапом в иссле­довании операций. При этом не существует каких-либо общих со­ветов или рекомендаций. Выбор критерия должно производить ли­цо, принимающее решение (ЛПР), с учетом конкретной специфи­ки решаемой задачи и в соответствии со своими целями, а также опираясь на прошлый опыт и собственную интуицию.

В частности, если даже минимальный риск недопустим, то сле­дует применять критерий Вальда. Если, наоборот, определенный риск вполне приемлем и ЛПР намерено вложить в некоторое пред­приятие столько средств, чтобы потом оно не сожалело, что вложе­но слишком мало, то выбирают критерий Сэвиджа.

Задание для самостоятельного решения : написать программу на языке С++ для выбора наиболее эффективного проекта легкового автомобиля для производства, используя критерии Лапласа, Вальда, Сэвиджа и Гурвица.

Намечается крупномасштабное производство легковых автомобилей. Имеются четыре варианта проекта автомобиля

Определена экономическая эффективность V ji каждого проекта в зависимости от рентабельности производства. По истечению трех сроков рассматриваются как некоторые состояния среды (природы). Значения экономической эффективности для различных проектов и состояний природы приведены в следующей таблице (д.е.):

Состояния природы

Требуется выбрать лучший проект для производства, используя критерии Лапласа, Вальда, Сэвиджа и Гурвица при ɑ=0,1. Сравните решения и сделайте выводы.

Наиболее просто решается задача о выборе решения в условиях неопределенности, когда нам хотя и неизвестны условия выполнения операции (состояние природы) но известны их вероятности:

В этом случае в качестве показателя эффективности, который мы стремимся обратить в максимум, естественно взять среднее значение, или математическое ожидание выигрыша, с учетом вероятностей всех возможных условий.

Обозначим это среднее значение для стратегии игрока через

или, короче,

Очевидно, есть не что иное, как взвешенное среднее выигрышей строки, взятых с кесами . В качестве оптимальной стратегии естественно выбрать ту из стратегий для которой величина обращается в максимум.

С помощью такого приема задача о выборе решения в условиях неопределенности превращается в задачу о выборе решения в условиях определенности, только принятое решение является оптимальным не в каждом отдельном случае, а в среднем.

Пример 1. Планируется операция в заранее неизвестных метеорологических условиях; варианты этих условий: Согласно материалам метеосводок за много лет частоты (вероятности) этих вариантов равны соответственно:

Возможные варианты организации операции в различных метеоусловиях приносят различную выгоду. Значения «дохода» для каждого решения в разные условиях приведены в табл. 13.1

Таблица 13.1

В последней строке даны вероятности условий. Средние выигрыши приведены в последнем столбце. Из него видно, что оптимальной стратегией игрока является его стратегия дающая средний выигрыш (отмечен звездочкой).

При выборе оптимальной стратегии в неизвестных условиях с известными вероятностями можно пользоваться не только средним выигрышем

но и средним риском

который, разумеется, нужно обратить не в максимум, а в минимум.

Покажем, что стратегия, максимизирующая средний выигрыш совпадает со стратегией, минимизирующей средний риск Вычислим оба эти показателя и сложим их:

(13.2)

Эта сумма (среднее взвешенное значение максимумов столбцов) для данной матрицы есть величина постоянная; Обозначим ее С:

откуда средний риск равен

Очевидно, эта величина обращается в минимум тогда же, когда а, - в максимум, следовательно, стратегия, выбранная из условий минимального среднего риска, совпадает со стратегией, выбранной из условий максимального среднего выигрыша.

Заметим, что в случае, когда известны вероятности состояний природы при решении игры с природой всегда можно обойтись одними чистыми стратегиями, не применяя смешанных. Действительно, если мы будем применять какую-то смешанную стратегию

т. е. стратегию с вероятностью стратегию с вероятностью и т. д., то наш средний выигрыш, осредненный и по условиям (состояниям природы) и по нашим стратегиям, будет:

Это - взвешенное среднее выигрышей соответствующих нашим чистым стратегиям.

Но ясно, что любое среднее не может превосходить максимальной из осредняемых величин:

Поэтому применение смешанной стратегии с любыми вероятностями не может быть выгоднее для игрока, чем применение чистой стратегии .

Вероятности условий (состояний природы) могут быть определены из статистических данных, связанных с многократным выполнением подобных операций или просто с проведением наблюдений над состояниями природы. Например, если железной дороге за данный промежуток времени предстоит выполнить не вполне известный объем перевозок, то данные о распределении условий могут быть взяты из опыта прошлых лет. Если, как в предыдущем примере, успех операции зависит от метеоусловий, данные о них могут быть взяты из статистики метеосводок.

Однако часто встречаются случаи, когда, приступая к выполнению операции, мы не имеем представления о вероятностях состояний природы; все наши сведения сводятся к перечню вариантов состояний, а оценить их вероятности мы не можем. Так, например, вряд ли нам удастся разумно оценить вероятность того, что в течение ближайших k лет будет предложено и реализовано важное техническое изобретение.

Разумеется, в подобных случаях вероятности условий (состояний природы) могут быть оценены субъективно: некоторые из них представляются нам более, а другие - менее правдоподобными. Для того чтобы наши субъективные представления о большей или меньшей «правдоподобности» той или другой гипотезы превратить в численные оценки, могут применяться различные технические приемы. Так, если мы не можем предпочесть ни одной гипотезы, если они все для нас равноправны, то естественно назначить их вероятности равными друг другу:

Это - так называемый «принцип недостаточного основания» Лапласа. Другой часто встречающийся случай - когда мы имеем представление о том, какие условия более вероятны, а какие - менее, т. е. можем расположить имеющиеся гипотезы в порядке убывания их правдоподобности: всего правдоподобнее первая гипотеза (ПО, затем вторая ) менее всего правдоподобна гипотеза (). Однако, насколько одна из них вероятнее другой - мы не знаем. В этом случае можно, например, назначить вероятности гипотез пропорциональными членам убывающей арифметической прогрессии:

или, учитывая, что

Иногда удается, исходя из опыта и здравого смысла, оценить и более тонкие различия между степенями правдоподобия гипотез.

Подобные методы субъективной оценки «вероятности-правдоподобности» разных гипотез о состоянии природы могут иногда помочь при выборе решения. Однако нельзя забывать, что «оптимальное решени выбранное на основе субъективных вероятностей, неизбежно окажется тоже субъективным. Степень субъективности решения можно уменьшить, если вместо вероятностей назначенных произвольно одним лицом, ввести средние из таких вероятностей, назначенных, независимо друг от друга, группой квалифицированных лиц («экспертов»). Метод опроса экспертов вообще широко применяется в современной науке, когда речь идет об оценке неопределенной ситуации (например, в футурологии). Опыт применения подобных методов учит, что зачастую оценки экспертов (принятые независимо одним от другого) оказываются далеко не столь разноречивыми, как это можно было предположить заранее, и вывести из них некоторые предпосылки для принятия разумного решения вполне возможно.

Выше мы осветили вопрос о выборе решения на основе объективно вычисленных или субъективно назначенных вероятностей состояний природы. Этот подход в теории решений - не единственный. Кроме него существуют еще несколько «критериев» или подходов к выбору оптимального решения в условиях неопределенности. Остановимся на некоторых из них.

1. Максиминный критерий Вальда

Согласно этому критерию в качестве оптимальной выбирается та стратегия игрока А, при которой минимальный выигрыш максимален, т. е. стратегия, гарантирующая при любых условиях выигрыш, не меньший, чем максимин:

(13.4)

Если руководствоваться этим критерием, надо всегда ориентироваться на худшие условия и выбирать ту стратегию, Для которой в худших условиях выигрыш максимален. Пользуясь таким критерием в играх с природой, мы как бы ставим взамен этой безличной и незаинтересованной инстанции активного и злонамеренного противника. Очевидно, такой подход может быть продиктован только крайним пессимизмом в оценке обстановки - «всегда надо рассчитывать на худшее!» - но как один из возможных подходов заслуживает рассмотрения.

2. Критерий минимаксного риска Сэвиджа

Сущность этого критерия в том, чтобы любыми путями избежать большого риска при принятии решения.

Критерий Сэвиджа, так же как и критерий Вальда - это критерий крайнего пессимизма, но только пессимизм здесь понимается по-другому: худшим объявляется не минимальный выигрыш, а максимальная потеря выигрыша по сравнению с тем, чего можно было бы достичь в данных условиях (максимальный риск).

3. Критерий пессимизма-оптимизма Гурвица

Этот критерий рекомендует в условиях неопределенности при выборе решения не руководствоваться ни крайним пессимизмом (всегда рассчитывай на худшее!) ни крайним, легкомысленным оптимизмом (все обойдется наилучшим образом!) Критерий Гурвица имеет вид:

где - коэффициент, выбираемый между нулем и единицей.

Проанализируем структуру выражения (13.6). При критерий Гурвица превращается в пессимистический критерий Вальда, а при - в критерий «крайнего оптимизма», рекомендующий выбирать ту стратегию, для которой в наилучших условиях выигрыш максимален. При получается нечто среднее между крайним пессимизмом и крайним оптимизмом (коэффициент и выражает как бы «меру пессимизма» исследователя). Этот коэффициент выбирается из субъективных соображений - чем опаснее ситуация, чем больше мы хотим в ней «подстраховаться», тем ближе к единице выбирается и.

При желании можно построить критерий, аналогичный критерию оптимизма-пессимизма Гурвица исходя не из выигрыша, а из риска, как в критерии Сэвиджа, но мы на этом не будем останавливаться.

Несмотря на то, что выбор критерия, как и выбор параметра в критерии Гурвица, являются субъективным, все же может оказаться полезным просмотреть ситуацию с точки зрения этих критериев. Если рекомендации, вытекающие из различных критериев, совпадают - тем лучше, можно смело выбирать рекомендуемое ими решение. Если же, как это часто бывает, рекомендации противоречат друг другу - всегда имеет смысл задуматься над этим и принять окончательное решение с учетом его сильных и слабых сторон. Анализ матрицы игры с природой под углом зрения разных критериев часто дает лучшее представление о ситуации, о достоинствах и недостатках каждого решения, чем непосредственное рассмотрение матрицы, особенно, когда ее размеры велики.

Пример 2. Рассматривается игра с природой 4X3 с четырьмя стратегиями игрока: и тремя вариантами условий (состояний природы): Матрица выигрышей дана в табл. 13.2.

Таблица 13.2

Найти оптимальное решение (стратегию), пользуясь критериями Вальда, Сэвиджа и критерием Гурвица при

Решение. 1. Критерий Вальда.

В каждой строке матрицы берем наименьший выигрыш (табл. 13.3).

Из величин максимальная (отмечена звездочкой) равна 0,25, следовательно, по критерию Вальда оптимальной является стратегия

2. Критерий Сэвиджа.

Строим матрицу рисков и помещаем в правом добавочном столбце максимальный риск в каждой строке (табл. 13.4).

Минимальным из значений является 0,60 (отмечено звездочкой); следовательно, по критерию Сэвиджа, оптимальной является любая из стратегий

Таблица 13.3

3. Критерий Гурвица

Записываем в правых трех столбцах матрицы (табл. 13 5) «пессимистическую» оценку выигрыша «оптимистическую» а); и их среднее взвешенное по формуле (13.6):

Максимальное значение (отмечено звездочкой) соответствует стратегии Следовательно, по критерию Гурвица с легким перевесом в сторону пессимизма оптимальной стратегией является Таким образом, все три критерия согласно говорят в пользу стратегии которую мы имеем все основания выбрать.(минимум берется по всем Найти этот минимакс (или максимин в критерии Вальда) можно обычными методами линейного программирования. Могут быть случаи, когда применение смешанных стратегий при пользовании критериями Вальда, Сэвиджа, Гурвица даст преимущество по сравнению с тем решением, где применяются одни чистые стратегии, однако мы будем рассматривать эти критерии только для чистых стратегий.

Одна из причин этого - в том, что мы хотим избежать сложных вычислений, когда их результат может быть сведен на нет недостатком сведений о ситуации (незнание вероятностей условий). Другая, более важная причина - в том, что основное содержание теории статистических решений (мы коснемся его в следующем параграфе) - это планирование получения и использования дополнительной информации о состоянии природы, которую можно добыть путем эксперимента. Исследования показывают, что в типичных случаях, когда речь идет о получении сколько-нибудь значительного количества дополнительной информации, критерии, не пользующиеся вероятностями состояний (Вальда и др.), становятся практически равносильными критерию, основанному на вероятностях состояний. Но мы знаем, что при пользовании таким критерием применение смешанных стратегий не имеет смысла; стало быть, если мы можем получить сколько-нибудь много дополнительной информации, применение смешанных стратегий теряет смысл (каким бы из критериев выбора решения мы ни пользовались). Если же мы не можем, производя эксперименты, добывать новую информацию, то различные критерии могут давать противоречащие друг другу рекомендации, как мы видели в примере 3.


Глава 2. Принятие решений в условиях неопределенности

2.10.Критерий Сэвиджа

Критерий Сэвиджа несколько отличается от всех остальных, рассматриваемых в данной книге. Оценка альтернатив производится не по исходной матрице, а по так называемой "матрице сожалений" или, как ее еще называют в некоторых источниках, "матрице рисков" .

Для произвольной альтернативы и конкретного состояния природы величина "сожаления" равна разнице между тем, что обеспечивает данная альтернатива, и тем, сколько максимально можно выиграть при данном состоянии. С экономической точки зрения величину "сожаления" можно трактовать как недополученный выигрыш (или упущенную выгоду) по сравнению с максимально возможным при данном состоянии природы.

Рассмотрим, каким образом следует выбирать наилучшую альтернативу, руководствуясь критерием Сэвиджа.

Порядок применения критерия Сэвиджа

1. Для каждого состояния природы j (столбца матрицы) определим максимальное значение выигрыша y j :

y j = max (x ij )

2. Для каждой клетки исходной матрицы X найдем разность между максимальным выигрышем r j для данного состояния природы и исходом в рассматриваемой ячейке x ij :

r ij = y j - x ij

Из полученных значений составим новую матрицу R - "матрицу сожалений" или, как ее еще можно назвать, матрицу недополученных выигрышей.

3. Для каждой альтернативы в новой матрице R найдем наибольший возможный недополученный выигрыш ("максимальное сожаление"). Это и будет являться оценкой данной альтернативы по критерию Сэвиджа S i :

S i = max (r ij ) , j=1..M

4. Оптимальной может быть признана альтернатива с минимальным (!) наибольшим недополученным выигрышем:

Х* = Х k , S k = min (S i ) , i=1..N

Пример применения критерия Сэвиджа

Применим изложенный выше алгоритм действий для принятия решения в условиях задачи из п.2.7 (табл.2.2).

1. Найдем наибольшую возможную величину прибыли для каждого сценария развития региона:

y 1 = max (x 11 , x 21) = max (45, 20) = 45

y 2 = max (x 12 , x 22) = max (25, 60) = 60

y 3 = max (x 13 , x 23) = max (50, 25) = 50

2. Рассчитаем значения "сожалений" для каждого проекта при каждом сценарии (т.е. найдем недополученную прибыль по сравнению с максимально возможной при данном сценарии развития). Составим из полученных значений "матрицу сожалений" (см. табл.2.3).

для проекта Х 1 :

r 11 = y 1 - x 11 = 45 - 45 = 0

r 12 = y 2 - x 12 = 60 - 25 = 35

r 13 = y 3 - x 13 = 50 - 50 = 0

для проекта Х 2 :

r 21 = y 1 - x 21 = 45 - 20 = 25

r 22 = y 2 - x 22 = 60 - 60 = 0

r 23 = y 3 - x 23 = 50 - 25 = 25

Табл.2.3. Матрица сожалений R (для примера).
Альтер-нативы (X i ) Состояния природы (j ) Макс. "сожаление" S i
1 2 3
X 1 0 35 0 35
X 2 20 0 25 25
y j 45 60 50

4. В полученной матрице по каждой строке найдем наибольшую величину "сожаления" для каждого проекта (последний столбец в табл.2.3). Это значение соответствует оценке данной альтернативы по критерию Сэвиджа.

Применим изложенный выше алгоритм действий для принятия решения в условиях задачи из п. 1 (табл. 2).

1. Найдем наибольшую возможную величину прибыли для каждого сценария развития региона:

y 1 = max (x 11 , x 21) = max(45, 20) = 45

y 2 = max (x 12 , x 22) = max(25, 60) = 60

y 3 = max (x 13 , x 23) = max(50, 25) = 50

2. Рассчитаем значения "сожалений" для каждого проекта при каждом сценарии (т.е. найдем недополученную прибыль по сравнению с максимально возможной при данном сценарии развития). Составим из полученных значений "матрицу сожалений" (см. табл.2.3).для проекта Х 1:

r 11 = y 1 - x 11 = 45 - 45 = 0

r 12 = y 2 - x 12 = 60 - 25 = 35

r 13 = y 3 - x 13 = 50 - 50 = 0

для проекта Х 2:

r 21 = y 1 - x 21 = 45 - 20 = 25

r 22 = y 2 - x 22 = 60 - 60 = 0

r 23 = y 3 - x 23 = 50 - 25 = 25

Табл.3. Матрица сожалений R (для примера).

4. В полученной матрице по каждой строке найдем наибольшую величину "сожаления" для каждого проекта (последний столбец в табл. 3). Это значение соответствует оценке данной альтернативы по критерию Сэвиджа.

S 1 = max(0, 35, 0) = 35

S 2 = max(25, 0, 25) = 25

5. Сравним полученные величины и найдем проект с минимальным (!) значением критерия. Он и будет оптимальным:

35 > 25 => S 1 > S 2 => X* = X 2

ЛПР, руководствующийся при принятии решений критерием Сэвиджа, выберет проект Х 2 .

Еще раз подчеркнем, что в отличие от остальных критериев, наилучшей альтернативой является та, для которой значение критерия Сэвиджа минимально, поскольку критерий отражает наибольший из возможных недополученных выигрышей для данной альтернативы. Разумеется, чем меньше можно недополучить, тем лучше.

Критерий Гурвица

Обычный (или простой) критерий Гурвица учитывает только крайние исходы x i max и x i min каждой альтернативы:

x i max = max(x ij), x i min = min(x ij), j = 1..M

Он позволяет учесть субъективное отношение применяющего данный критерий ЛПР за счет придания этим исходам разных "весов". Для этого в расчет критерия введен "коэффициент оптимизма" λ, 0 ≤ λ ≤ 1. Формула для расчета критерия Гурвица для i-й альтернативы с коэффициентом оптимизма λ выглядит следующим образом:

H i (λ) = λ x i max + (1 - λ) x i min

Если исходы представляют возможные выигрыши, то оптимальной признается альтернатива с максимальным значением критерия Гурвица:

Х* = Х k , H k (λ) = max(H i (λ)), i = 1..N


Как видно из формулы, правильный выбор коэффициента оптимизма λ оказывает существенное влияние на результат применения критерия. Остановимся подробнее на логике подбора λ.

Если ЛПР настроен пессимистически, то для него важнее меньше потерять при плохом развитии событий, пусть даже это означает не такой большой выигрыш при удачном состоянии. Значит, удельный вес наихудшего исхода x i min в оценке альтернативы должен быть выше, чем для x imах. Это обеспечивается, когда λ находится в пределах от 0 до 0.5, исключая последнее значение.

При λ=0 критерий Гурвица "вырождается" в критерий Вальда и подходит только для очень пессимистично настроенных ЛПР.

Оптимистичный ЛПР, напротив, ориентируется на лучшие исходы, так как для него важнее больше выиграть, а не меньше проиграть. Больший удельный вес в оценке наилучшего исхода достигается при λ больше 0.5 и до 1 включительно. При λ=1 критерий Гурвица становится критерием "максимакса", который учитывает исключительно наибольший исход каждой альтернативы.

Если у ЛПР нет ярко выраженного уклона ни в сторону пессимизма, ни оптимизма, коэффициент λ принимается равным 0.5.

Критерий Сэвиджа был предложен Леонард Джимми Сэвиджем в 1954 году.

Суть этого критерия заключается в нахождении минимального риска. При выборе решения по этому критерию сначала матрице функции полезности (эффективности) сопоставляется матрица сожалений

элементы которой отражают убытки от ошибочного действия, т.е. выгоду, упущенную в результате принятия i-го решения в j-м состоянии. Затем по матрице D выбирается решение по пессимистическому критерию Вальда, дающее наименьшее значение максимального сожаления.

Условиями неопределённости считается ситуация, когда последствия принимаемых решений неизвестны, и можно лишь приблизительно их оценить. Для принятия решения используются различные критерии, задача которых - найти наилучшее решение максимизирующее возможную прибыль и минимизирующее возможный убыток.

Критерий заключается в следующем:

  1. Строится матрица стратегий (платёжная матрица). Столбцы соответствуют возможным исходам. Строки соответствуют выбираемым стратегиям. В ячейки записывается ожидаемый результат при данном исходе и при данной выбранной стратегии.
  2. Строится матрица сожаления (матрица рисков). В ячейках матрицы величина сожаления - разница между максимальным результатом при данном исходе (максимальном числе в данном столбце) и результатом при выбранной стратегии. Сожаление показывает величину, теряемую при принятии неверного решения.
  3. Минимаксное решение соответствует стратегии, при которой максимальное сожаление минимально. Для этого для каждой стратегии (в каждой строке) ищут максимальную величину сожаления. И выбирают то решение (строку), максимальное сожаление которого минимально.

Для нашего примера отыскиваем матрицу D, вычитая (-121) из первого столбца матрицы полезности, 62 из второго и т.д.

Наибольшее значение среди минимальных элементов строк здесь равно max [-405.75, -270.5, -135.25, -143.25] = -135.25 млн.руб. и, покупая 40 станков, мы уверены, что в худшем случае убытки не превысят 135.25 млн.руб.

Таким образом, различные критерии приводят к различным выводам:

1) по критерию Лапласа приобретать 40 станков,

2) по критерию Вальда - 20 станков,

3) по критерию Гурвица - 20 при пессимистическом настроении и 50 в состоянии полного оптимизма,

4) по критерию Сэвиджа - 40 станков.

Возможность выбора критерия дает свободу лицам, принимающим экономические решения, при условии, что они располагают достаточными средствами для постановки подобной задачи. Всякий критерий должен согласовываться с намерениями решающего задачу и соответствовать его характеру, знаниям и убеждениям.

Существует обширная литература по теории игр и статистических решений.



37. Методы принятия инвестиционно-финансовых решений в условиях определенно­сти.

Это самый простой случай: известно количество возможных ситуаций (вариантов) и их исходы. Нужно выбрать один из возможных вариантов. Степень сложности процедуры выбора в данном случае определяется лишь количеством альтернативных вариантов. Рассмотрим две возможные ситуации:

а) Имеется два возможных варианта. В данном случае аналитик должен выбрать (или рекомендовать к выбору) один из двух возможных вариантов. Последовательность действий следующая:

Определяется критерий, по которому будет делаться выбор;

Методом «прямого счета» исчисляются значения критерия для сравниваемых вариантов;

Возможны различные методы решения этой задачи. Как правило, они подразделяются на две группы:

Методы, основанные на дисконтированных оценках;

Методы, основанные на учетных оценках.

Первая группа методов основывается на следующей идее. Денежные доходы, поступающие на предприятие в различные моменты времени, не должны суммироваться непосредственно; можно суммировать лишь элементы приведенного потока. Если обозначить F1,F2,....,Fn коэффициент дисконтирования прогнозируемый денежный поток по годам, то i-й элемент приведенного денежного потока Рi рассчитывается по формуле:

P i = F i / (1+ r) i

где r- коэфициент дисконтирования.

Назначение коэффициента дисконтирования состоит во временной упорядоченности будущих денежных поступлений (доходов) и приведении их к текущему моменту времени. Экономический смысл этого представления в следующем: значимость прогнозируемой величины денежных поступлений через i лет (Fi) с позиции текущего момента будет меньше или равна Pi. Это означает так же, что для инвестора сумма Pi в данный момент времени и сумма Fi через i лет одинаковы по своей ценности. Используя эту формулу, можно приводить в сопоставимый вид оценку будущих доходов, ожидаемых к поступлению в течении ряда лет. В этом случае коэффициент дисконтирования численно равен процентной ставке, устанавливаемой инвестором, т.е. тому относительному размеру дохода, который инвестор хочет или может получить на инвестируемый им капитал.



Итак последовательность действий аналитика такова (расчеты выполняются для каждого альтернативного варианта):

Рассчитывается величина требуемых инвестиций (экспертная оценка), IC;

Устанавливается значение коэффициента дисконтирования, r;

Определяются элементы приведенного потока, Pi;

Рассчитывается чистый приведенный эффект (NPV) по формуле: NPV=E*Pi-IC

Сравниваются значения NPV;

Предпочтение отдается тому варианту, который имеет больший NPV (отрицательное значение NPV свидетельствует об экономической нецелесообразности данного варианта).

Вторая группа методов продолжает использование в расчетах прогнозных значений F. Один из самых простых методов этой группы - расчет срока окупаемости инвестиции.Последовательность действий аналитика в этом случае такова:

Расчитывается величина требуемых инвестиций, IC;

Оценивается прибыль (денежные поступления) по годам, Fi;

Выбирается тот вариант, кумулятивная прибыль по которому за меньшее число лет окупит сделанные инвестиции.

б) Число альтернативных вариантов больше двух. Процедурная сторона анализа существенно усложняется из-за множественности вариантов, техника «прямого счета» в этом случае практически не применима. Наиболее удобный вычислительный аппарат - методы оптимального программирования (в данном случае этот термин означает «планирование»). Этих методов много (линейное, нелинейное, динамическое и пр.), но на практике в экономических исследованиях относительную известность получило лишь линейное программирование. В частности рассмотрим транспортную задачу как пример выбора оптимального варианта из набора альтернативных. Суть задачи состоит в следующем.

Имеется n пунктов производства некоторой продукции (а1,а2,...,аn) и k пунктов ее потребления (b1,b2,....,bk), где ai - объем выпуска продукции i - го пункта производства, bj - объем потребления j - го пункта потребления. Рассматривается наиболее простая, так называемая “закрытая задача ”, когда суммарные объемы производства и потребления равны. Пусть cij - затраты на перевозку единицы продукции. Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям, минимизирующую суммарные затраты по транспортировке продукции. Очевидно, что число альтернативных вариантов здесь может быть очень большим, что исключает применение метода “ прямого счета ”. Итак необходимо решить следующую задачу:

ΣΣCg Xg→ min

Σ Xg = bj Σ Xg = bj Xg→ 0

Известны различные способы решения этой задачи -распределительный метод потенциалов и др. Как правило для расчетов применяется ЭВМ.

При проведении анализа в условиях определенности могут успешно применяться методы машинной имитации, предполагающие множественные расчеты на ЭВМ. В этом случае строится имитационная модель объекта или процесса (компьютерная программа), содержащая b-е число факторов и переменных, значения которых в разных комбинациях подвергается варьированию. Таким образом машинная имитация - это эксперимент, но не в реальных, а в искусственных условиях. По результатам этого эксперимента отбирается один или несколько вариантов, являющихся базовыми для принятия окончательного решения на основе дополнительных формальных и неформальных критериев.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «40in-magazin.ru» — Бизнес. Бухгалтерия. Производство. Кредиты. Договоры. Оборудование